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Nonlinear electrohydrodynamic waves on films falling down an inclined plane
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The stability of a perfectly conducting viscous film, falling down an inclined plane, is considered
for the case of an applied uniform normal electric field. A highly nonlinear evolution equation for
the deformation of the free surface of the film is derived. The study of the linear stability of the
system shows the destabilizing effect of the electric forces. A weakly nonlinear analysis leads to a
Ginsburg-Landau equation, which predicts that the destabilization induced by the electric field in
an otherwise stable film occurs in the form of traveling waves of finite amplitude.

PACS number(s): 47.65.4+a

I. INTRODUCTION

The wave motion in a thin film may often be observed
in everyday life. A great deal has been learned about
the onset of film waves and their weakly nonlinear evolu-
tion, but their often observed strong nonlinear character
remains to be quantitatively understood.

In this paper we take an analytical approach to the
problem of film waves on an inclined plane when the film
is subjected to an electric field uniform at infinity. The
nonelectrical problem has been widely studied in recent
years. Reviews of the topic have been done by Chang [1]
and Lin [2]. Benjamin [3] and Yih [4] solved the linear
stability problem for the basic flow of constant thick-
ness and determined the critical Reynolds number for
instability. The highly nonlinear character of the phe-
nomena has motivated several approaches: perturbative
expansions [5,6], normal form analysis [7,8], and bound-
ary layer theories [9]. The theoretical results, however,
do not explain completely the experimental [10-12] and
numerical [13] results.

The dynamics of film waves has received much atten-
tion from various industries because it has a dramatic
effect on transport rates of mass, heat, and momentum.
The interest in considering the electric field is due to its
possible application to industrial processes, such as the
enhancement of heat transfer. The electric field has been
used in these devices to destabilize the liquid films on the
walls.

II. DESCRIPTION OF THE SYSTEM

We consider a thin film of a viscous liquid falling down
an inclined plane. The film has thickness h and the angle
between the plane and the horizontal is 3. The mass
density of the liquid is p and its kinematic viscosity is v
and it is assumed to be a perfect electric conductor. The
surface tension between the liquid and the surrounding
air is given by o. On the surface, an electric field is
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applied that at infinity is uniform and perpendicular to
the unperturbed surface (Fig. 1).

The equations describing the system are the Navier-
Stokes equations for the liquid and the Laplace equation
for the electric potential in the air. There is a set of
boundary conditions expressing the fact that the liquid
is attached to the wall and, at the same time, is electri-
cally grounded. The imposed electric field acts upon the
electric charge that lies on the surface.

For the system of equations, there exists a basic solu-
tion analogous to the solution for the nonelectric case,
which was discovered by Nusselt. In this solution all the
magnitudes are independent of the longitudinal coordi-
nate x and the time ¢. This solution, depending only on
the transverse coordinate z, is given by

ug = %(Zhoz —2%), (1a)
Wwo = 0 5 (lb)
E2
D0 = Patm — 502 & — pgcos B(z — ho) (1c)
o = Eo(z - ho) s (1d)

FIG. 1. The system under consideration.

3573 ©1996 The American Physical Society



3574

where the layer width hg is assumed to be uniform. The
steady velocity profile is semiparabolic, while the electric
potential varies linearly (see Fig. 1).

III. SCALES AND PARAMETERS

In the following, we will consider changes to these
quantities. In order to make the result universal, we must
consider appropriate scales for the perturbed quantities.

We will take as the scale for the longitudinal compo-
nent z a quantity A that characterizes the typical length
of the surface deformation. We will consider that A is
much greater than the depth ho (long-wave limit). The
latter distance will be taken as the scale for the trans-
verse component z in the liquid. This scale, however, is
not appropriate for measuring distances in the air that
extend to infinity. Instead, we will scale z in the air with
the unit A, since potential theory shows that perturba-
tions in the electric field extend up to a distance similar
to the extent of the sources, in this case the changes in
the free surface charge density.

For time, the mechanical period A/U, will be used,
where Uy is the base velocity at the unperturbed surface,

:-‘J_SiPth_ (2)

U,
0 2v

The velocity components will be scaled with the ratio of
the typical length to the time scale,

A h h
UOZT:UOa ’wOZTq:TOUQ. (3)

The unit for changes in the pressure is taken from the
Bernouilli’s law as pop = pUZ. Finally, the unit for the
electric potential is taken from the change in the basic
potential, ¢0 = tho.

This set of scales gives us the following system of nondi-
mensional equations.

(1) Equations in the liquid layer (0 < z < h):

uy +w, =0, (4a)

ug + (U + w)uy + w(U, + uy)

1 2
—Pzx + ﬁ(uzz + 6 uza:) ) (4b)

wi + (U + w)w, + ww, = —5%;0; + %(wzz + 0% wge) -
(4¢)
(2) Equations in the air (6h < { < 00):
P2z + Ppec =0 . (5)
(3) Boundary conditions at the wall (z = 0):

w=0. (6)
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(4) Boundary conditions at the surface (z = h, { =
Sh):

w=hy + (U + u)hg, (7a)
¢—h+1=0, (7b)
U, +u, + 52wm) + 46%h,w, =0, (7¢c)

We 2 272 1+ 52hi

22 [(1+860)* (14 6%h2) = 1] — bu. s

R Wé%heo

o h—1)= — 20 tee
+ 5P cot 3( ) (15 07h2)72 (7d)
(5) Boundary conditions at infinity:

¢, — 0. (8)

In the above set of equations, U means the dimension-
less base velocity U = 2z — 2% and ( is the transverse
component in the air ( = 26. Since the magnitudes de-
pending on z or ¢ only mix in the boundary conditions
where both coordinates have a definite value, there is no
problem in using both variables. The dimensionless pa-
rameters are the relative depth J, the Reynolds number
R, the Weber number W, and an electric parameter, W,
which may be called the “electric Weber number.”

_ho _ Uoh _ gsin Bh3
6= T y R = —I/ = 2,2 k] (ga‘)

T EOEg
- = — 9b
w pgh2sing’ w. pgho sin 3 (9b)

Since we will consider the long-wave limit, we assume
that the relative depth § = ho/X is much smaller than
unity. The essential role played by the surface tension
in the formation and stabilization of the film waves is
well known [13]. Therefore, we can also expect that
the electric field will have an appreciable effect when its
corresponding parameter is comparable to the capillary
one. Both effects for the perturbed surface appear in Eq.
(7d) preceded by the factors Wé2? and W.4, respectively.
These terms will be comparable whenever

W.  eoE2A
wWé o

~1. (10)

This happens to be the case for a conducting thin film
(h ~ 1mm) of water or glycerin (¢ ~ 0.07 N/m) sub-
jected to a normal electric field of the order of 1MV /m.
This field, although strong, is still only one third of the
dielectric breakdown field in air. On the other hand, for
mercury films (0 ~ 0.44 N/m) the required electric field
would exceed the dielectric breakdown field and it would
be neccesary to replace the air with a vacuum, inert gases,
or an insulating liquid.
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Kapitza [10] considered the strong surface tension case
making W = O(6~2). In this paper, we assume that
the electric field has a comparable effect. Hence, W, =
o5 1).

We will study successive approximations to the com-
plete system, retaining greater powers in § each time.

IV. SOLUTION AT ZEROTH ORDER

To find a solution of the system we must impose a
solvability condition on the magnitudes. This condition
may come from the integral mass conservation law

h
hi +Q, =0, where Q= / (U +u)dz. (11)
0

Expanding this equation up to the lowest order in powers
of §, we arrive at the equation

h: + 2h%h, =0 . (12)

This equation is also found in the nonelectrical case
[14,6,5] and represents forward breaking waves. For a
given deformation, its profile steepens at the front and
the parameter é becomes locally finite and higher-order
terms are needed. In the limit of small amplitude, the
velocity of the linear waves is twice the speed of the basic
flow at the surface.

Assuming that the solvability condition is verified, we
can obtain the magnitudes up to the lowest order. These
are

u=2h-1)z, (13a)
w = ——hwzz ) (13b)
p= }%[_Wﬁhm + cot B(h — 1) + Wed(H(h —1)),] ,

(13¢)
1 [ 2(h(=)-1)

=2 2z =) 13d
¢ w/_oo22+(m—a:’)2dm’ (13d)

where H(h) means the Hilbert transform, defined by

1 >, h(z")
= — —_— 14
=P [ a2 (14)
with P the principal value of the integral.

V. SOLVABILITY CONDITION
AT FIRST ORDER

If we retain up to the first order in § and substitute
in the terms of this order the above results, we can in-
tegrate the system and obtain a solvability condition for
the system, given as an equation for h:

he + [3h° + 8(55 Rh® — § cot Bh%) b,

+2W6h by — 26W A (H(R — 1)) ] =0. (15)

This equation differs from that found by Nakaya [5] and
Lin [6] only in the new term due to the electric field.

A. Linear analysis

To study the effect of the new term, we can consider
the stability of the basic flow against infinitesimal per-
turbations. If we assume that the surface deformation is
near the basic state, i.e., h = 1 + 7, with n < 1, we get
to the linear equation

N + 21, + 5[(—183}2 - % cot B) Nz

+3W 6 nenee — SWed(H(n)) 0. (16)

m:!:m] =
Considering solutions of the form 7 = Aexp(st + ikz)
we arrive at the dispersion relation (cf. [7])

s+ 2ik — (SR — 2 cot B)k? + 2Wk* — 2W.k?*|k| =0 .

(17)

Splitting this relation into its real and imaginary parts,
we get

Res = 6[(SR— 2cot B)k? — 2Wk* + 2W.K?|k|] ,
(18a)

Ims = -2k . (18b)
We can see that the electric term is a destabilizing one.
We have several cases.

(1) If R > R. = 5cot3/4, there exists, as in the non-
electrical case, a band of unstable wavelengths, which
extends from k£ = 0. The most unstable mode has a wave
number

3W, 1

- VOWE = 32WD
= 5 T sz VOWZ —32WD, (19)

with D = cot 3 — 4R/5. This wave number reduces to
k, = (|D|/2Wé2)/2 in the absence of an electric field.

(2) If R < R, the system is always stable if there is
no electric field. If such a field is imposed, we have two
more cases.

(a) If W, < 2(DW)¥2, all modes are stable. The
curve for the growth rate is a polynomial one, which never
crosses the Re(s) = 0 axis.

(b) If W, > 2(W D)2, there appears a band of unsta-
ble modes around k, (see Fig. 2).

In what follows we will consider the changes in the
system behavior for R < R., when W, goes above or
below its critical value.

ku

B. Bifurcation analysis

From the linear equation (16) we can conclude that
below the critical value W, = 2(WD)1/ 2 all modes are
stable, whereas above this value there appears a band of
unstable modes around the most unstable one, namely,
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FIG. 2. Changes in the dispersion relation due to the elec-
tric field, for a Reynolds number above (a) or below (b) the
critical one.

ke = (D/2W§%)Y/2. For a value of W, slightly above
the critical value, W, = We.(1 + u), p being small, the
width of the unstable band is of order p!/2. To study the
behavior of these modes we have to introduce nonlinear
terms from (15). Putting h = 1 + 5, with n < 1 and
retaining up to the first order in 72 and 67 we get

26

WS (H(0)),0a] = O. (20)

:BTE:I
This equation is a modified Kuramoto-Sivashinsky equa-
tion with a new integral term. This term makes this
equation similar to the Benjamin-Ono equation.

To study (20) we can take away the traveling wave
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term 27, using a moving frame with the linear velocity.
We then use the coordinates defined by
F=z—2t, t=t. (21)

We can also simplify the equation through a rescaling of
the magnitudes around the critical point. With

3 w 1/2 . 36W , D3/2 .
iE:fS(ﬁ) z, :2D2t » M= ezt o (22)
W, =2(WD)Y2(1 4 p) . (23)

The new parameter u will be the bifurcation parameter.
With this rescaling the equations become (dropping the
asterisks)

Tt + Mz — Naz + Nezze — 2(1 + M)’H(Tl)zmz =0. (24)

For a small enough value of y only a thin band of
unstable modes around a central one appears. We can
then argue that the main features of the system behavior
can be obtained from an analysis of these modes.

This analysis follows essentially the study developed
by Manneville in [15]. We consider a wave packet around
the central mode and obtain an equation for the envelope
from a multiple-scale expansion.

Cousider first a single mode of wave number k,

n(z,t) = A ~ Ax(0)e*tTHke (25)

We obtain, after substitution in (24), that the growth
factor s is of order O(p) but k ~ 1 + Op'/2. In terms of
a parameter € = O(u!/?), we have

n(z,t) = Ax(t) ~ (Ak(O)e“‘zt““) e® = A(X,T)e™
(26)

where T' = €2t, X = ex. This suggests a multiple-scale
analysis with

T=¢t, z=z, X =czx. (27)

We will also expand the surface deformation n(z, X,T)
and the bifurcation parameter as

n= in""ei :
=1

Note that the expansion of 1 begins with €, whereas the
expansion of u does it with €2.

o0

n= Z/Liei . (28)

=2

1. Lowest order

We expand Eq. (24) in powers of the small parameter
¢ and obtain, at the lowest order, the equation

=8 + nlee — 2H(MM)gee =0 . (29)

This is a linear equation whose solution is a combination
of exponentials
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7MW = A+ A1 + At e (30)

where A* means the complex conjugate of A. The coeffi-
cient A, however, must be null, because of the volume
conservation.

2. Second order

At the following order, we have

=12+ 1a — 2H ()0

= —nWn® +20{% — a0 o + 6HHD)eox . (31)

This condition does not impose any restriction on the
long scale X, because the corresponding terms cancel
each other. Instead, we have a linear equation with a
quadratic forcing term. The solution for 7(®) is a com-
bination of a particular solution and a solution of the
homogenous equation,

7 = Azo + Az1€™ + A2:e* + c.c. (32)

As before, the coefficient Ao must vanish. The ampli-
tude of the forced response is given by

i
Agp = —ZAil . (33)

This result means that the first effect of the unsta-
ble modes is a coupling with themselves. Since the cou-
pling is quadratic, it excites a band of modes around 2k,
that were initially stable. The evolution of these sec-
ondary modes is fully dominated by the primary modes.
A further coupling between the excited and the unsta-
ble modes leads to a resonant term of wave number k..
The expected result will be a cubic term in the evolution
equation for Aq;.

3. Third order

To this order the instability becomes explicit. We have
the equation

=12 + 1l — 2H(0)zss
= —n@y{) — pn@ + 23
—4nlDox + 6H (P )aax — g + ik
—6nSxx + 6H(n™M)exx
+uPHND) e - (34)
To avoid the appearance of secular terms we have to im-
pose that the coefficient of exp(iz) on the right hand side

vanishes (Fredholm’s Alternative). This gives us a new
equation for the amplitude of the envelope,

Aunr — ;L(Z)Au + %|A11|2A11 —Aunuxx =0. (35)

This a Ginsburg-Landau equation. It can be encountered
in a variety of problems and has been widely studied.

VI. ANALYSIS OF THE ENVELOPE EQUATION

Renaming A;; as A we can write Eq. (35) as
Ar —pA+ ;|APA— Axx =0. (36)

We can assume, as a first approach, that the amplitude
does not depend on the spatial variable X. This is almost
true when the band of unstable modes is narrow. In this
case (36) reduces to a Stuart-Landau equation,

1
Aot — ,U,A() + Z|A0|2A0 =0. (37)

The behavior predicted by this equation depends on
the sign of u. For u < 0 we have only a stationary
amplitude, namely, A = 0, which is stable. For u© > 0
we have three stationary values of A, A = 0 and A =
+(8u)Y/2. The first value is now unstable (as we have
predicted from the linear analysis), while 4 = (8u)'/2 is
now stable. This is a classical supercritical bifurcation
(cf. Fig. 2).

If we consider modes around the central one, we can
obtain the so called phase winding solutions. Assuming

A= Ag(T)e'EX | (38)
we obtain an equation for Ag,
AKT—(;L—KZ)AK+%|AK|2AK =0. (39)

This equation is analogous to (37), but now the bifur-
cation occurs at u = K? (when the growth rate of the
mode crosses the s = 0 axis) and the limit amplitude is
smaller than Ag.

An analysis of the phase winding solutions shows that
these solutions are unstable when K < (u/3)'/2 (Eck-
haus instability). Further analysis introducing the y co-
ordinate would show other types of instabilities, such as
the zig-zag instability. The interested reader may com-
plete the details along the lines gives in [15].

VII. CONCLUSSION

We know that for values of the Reynolds number below
the critical one and in the absence of electric fields, all the
modes are stable. However, it is theoretically possible to
destabilize the surface with the help of an electric field.
We would obtain in this case weakly nonlinear traveling
waves with phase velocity, wavelength, and amplitude
given by (in nondimensional units)

[2W |W.D5/2  2D3
’U—2, )\:27“5 7, A= _9W3/2 —_QW

(40)
for a value of the electric Weber number slightly above
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W. 2 2VDW . (41)

In this case, the instability appears in the form of an un-
stable band of modes around a central one. It is possible
to find an equation of the envelope of this wave packet.
If we look for numerical values of these magnitudes we
must take a highly viscous liquid, such as the glycerin.
We find that for a layer of about 2mm, and an angle
B ~ 85° this destabilization is possible for values of the

electric field around 800 kV/m.
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